skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Block, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Connes, A.; Consani, C.; Dundas, B.; Khalkhali, M.; Moscovici, H. (Ed.)
    We give a simplified version of a construction due to Denis Perrot that recovers the Todd class of the complexified tangent bundle of a smooth manifold from a JLO-type cyclic cocycle. The construction takes place within an algebraic framework, rather than the customary functional-analytic frame- work of the JLO theory. The series expansion for the exponential function is used in place of the heat kernel from the functional-analytic theory; the Dirac operator chosen is far from elliptic; and a remarkable new trace discovered by Perrot replaces the operator trace. In its full form, Perrot’s theory constitutes a wholly new approach to index theory. The account presented here covers most but not all of his approach. 
    more » « less